Refinement of the Room-Temperature Structure of $\boldsymbol{\alpha}$-CaAlF $_{5}$

By A. Hemon and G. Courbion
Laboratoire des fluorures, UA 449, Faculté des Sciences, 72017 Le Mans CEDEX, France

(Received 7 May 1990; accepted 17 December 1990)

Abstract

Calcium aluminium pentafluoride, $M_{r}=$ $162 \cdot 05$, monoclinic, $C 2 / c, a=8.712$ (3), $b=6.317$ (2), $c=7.349$ (3) $\AA, \beta=115.04$ (3) ${ }^{\circ}, V=366.4$ (4) \AA^{3}, Z $=4, D_{x}=2.94 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{Mo} K \alpha, \lambda=0.71073 \AA, \mu$ $=1.90 \mathrm{~mm}^{-1}, F(000)=312$, room temperature, $R=$ 0.020 for 1201 unique reflections. The sample was prepared by the chloride flux method. $\alpha-\mathrm{CaAlF}_{5}$ is isotypic with CaCrF_{5} and is characterized by linked chains of AlF_{6} octahedra along the c axis between which Ca ions are inserted in pentagonal bipyramidal sites.

Experimental. Chloride flux was grown from a mixture of composition $\mathrm{NaF}+\mathrm{CaF}_{2}+\mathrm{AlF}_{3}+3 \cdot 3 \mathrm{ZnCl}_{2}$ $+\mathrm{CaCl}_{2}$ in a platinum crucible, under an argon atmosphere, by heating to 998 K then cooling at $1 \mathrm{~K} \mathrm{~h}^{-1}$ to 973 K with air quenching. Needle-shaped crystals $(0.02 \times 0.002 \times 0.0009 \mathrm{~mm})$. Data collected on a Siemens AED2 four-circle diffractometer. $\omega-2 \theta$ step-scan mode in N steps of $\Delta \omega^{\circ}, 37 \leq N \leq 49,0.025$ $\leq \Delta \omega \leq 0.027^{\circ}$; time per step $1-4 \mathrm{~s}$. Profile fitting data analysis (Clegg, 1981); isotropic linewidth $\Gamma=$ $(0.89-0.06 \tan \theta)^{\circ}$. Aperture $D=3.5 \mathrm{~mm}$.
Lattice constants based on 26 reflections measured in double step-scan mode at $\pm\left(2 \theta \approx 30^{\circ}\right)$; absorption correction by the Gauss method, $A_{\text {max }}=0.96, A_{\text {min }}=$ $0 \cdot 89$. Intensity measurements to $2 \theta \leq 85^{\circ}$ of one and a half independent sets of reflections within the range $-16 \leq h \leq 16, \quad 0 \leq k \leq 12, \quad 0 \leq l \leq 13$. Standard reflections ($\overline{3} 13, \overline{3} 31,33 \overline{1}$) showed intensity variation of 1.0%. 1945 reflections measured, 1201 independent reflections used for refinements $\quad[|F|>$ $6 \sigma(|F|)], R_{\mathrm{int}}=0.015$.
Structure solved from atomic parameters of CaCrF_{5} in space group $\mathrm{C} 2 / \mathrm{c}$ (Kun Wu \& Brown, 1973). F magnitudes used in least-squares refinements, 36 parameters refined, maximum $|\Delta / \sigma|$ $=0.002$, secondary-extinction factor $x=1.3 \times 10^{-6}$ [$F^{*}=F\left(1-x 10^{-4} F^{2} / \sin \theta\right)$], atomic scattering factors for Ca, Al and F from International Tables for X-ray Crystallography (1974, Vol. IV), calculations performed with the SHELX 76 program (Sheldrick, 1976), all atoms refined anisotropically $[R=0.020$, $\left.w R=0.018, w=1 / \sigma^{2}(F)\right]$. Maximum and minimum heights in final difference F map +0.6 and

Table 1. Atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ for α-CaAlF $_{5}$ (e.s.d.'s in parentheses)

$B_{\mathrm{eq}}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	B_{eq}
$\mathrm{Ca}^{2+} 4(e)$	0	$0.5424(0)$	$\frac{1}{4}$	$0.51(1)$
$\mathrm{Al}^{3+} 4(a)$	0	0	0	$0.42(1)$
$\mathrm{F}(1) 4(e)$	0	$0.9422(1)$	$\frac{1}{4}$	$0.87(3)$
$\mathrm{F}(2) 8(f)$	$0.0114(1)$	$0.7169(1)$	$0.9737(1)$	$0.84(2)$
$\mathrm{F}(3) 8(f)$	$0.7789(1)$	$0.9822(1)$	$0.8870(1)$	$1.26(3)$

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\alpha-\mathrm{CaAlF}_{5}$ (e.s.d.'s in parentheses)

Al^{3+} octahedron			
$2 \times \mathrm{Al}-\mathrm{F}(1)$	1.873 (1)	$F(1)-F(2)$	$2 \cdot 516$ (1)
$2 \times \mathrm{Al}-\mathrm{F}(2)$	1.806 (1)	$F(1)-F(3)$	2.558 (1)
$2 \times \mathrm{Al}-\mathrm{F}(3)$	1.749 (1)	$\mathrm{F}(2)-\mathrm{F}(3)$	2.495 (1)
$\left\langle d_{\text {Al-F }}\right\rangle=1.809$		$d_{\text {Shannon }}=1.820$	
$\mathrm{F}(1)-\mathrm{Al}-\mathrm{F}(2)$	86.3 (0)	$\mathrm{F}(2)-\mathrm{Al}-\mathrm{F}(3)$	89.1 (0)
$\mathrm{F}(1)-\mathrm{Al}-\mathrm{F}(3)$	89.8 (0)	$\mathrm{Al}-\mathrm{F}(1)-\mathrm{Al}$	157.5 (0)
Ca^{2+} pentagonal bipyramid			
$\mathrm{Ca}-\mathrm{F}(1)$	2.525 (1)	$2 \times \mathrm{Ca}-\mathrm{F}(2)$	$2 \cdot 293$ (1)
$2 \times \mathrm{Ca}-\mathrm{F}(2)$	2.349 (1)	$2 \times \mathrm{Ca}-\mathrm{F}(3)$	$2 \cdot 207$ (1)
$\left\langle d_{\text {Ca-F }}\right\rangle=2.318$		$d_{\text {Shannon }}=2.345$	

$-0.75 \mathrm{e} \AA^{-3}$. The final atomic coordinates and equivalent isotropic temperature factors are listed in Table 1 and some characteristic interatomic distances and selected angles are given in Table 2.*

The structure (Fig. 1) is built from chains of AlF_{6} octahedra sharing opposite corners and running in the [001] direction. The AlF_{6} octahedra are distorted and the longest $\mathrm{Al}-\mathrm{F}$ distances involve the shared $\mathrm{F}(1)$ atoms, the mean $\mathrm{Al}-\mathrm{F}$ distance being very close to the sum of the ionic radii (Shannon, 1976) and to the $\mathrm{Al}-\mathrm{F}$ distances observed in compounds with the trans-octahedra connection (Hemon \& Courbion, 1990). Within these chains the $\mathrm{Al}-\mathrm{F}(1)-$

[^0]

Fig. 1. Perspective view of chains of trans-linked AlF_{6} octahedra and of CaF_{7} polyhedra in $\alpha-\mathrm{CaAlF}_{5}$. Ca ions are represented as open circles.

Al angle is bent to 157.5° (Fig. 2). Ca atoms exhibit a pentagonal bipyramidal coordination which is formed by edge-sharing chains of CaF_{7} polyhedra running along [001] (Fig. 1).
As claimed many years ago, $\alpha-\mathrm{CaAlF}_{5}$ is isotypic with CaCrF_{5}. Our refinement confirms the results of Kun Wun \& Brown (1973) [refinement of CaCrF_{5} in $C 2 / c$ from the data given by Dumora, Von der Mühll \& Ravez (1971) (non-centrosymmetric space group $C c$) but with better agreement for the reliability factor.

Fig. 2. (100) projection of $\alpha-\mathrm{CaAlF}_{5}$.

References

Clegg, W. (1981). Acta Cryst. A37, 22-28.
Dumora, D., Von der Mühll, R. \& Ravez, J. (1971). Mater. Res. Bull. 6, 561-571.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hemon, A. \& Courbion, G. (1990). J. Solid State Chem. 86, 249-254.
Kun Wu, K. \& Brown, I. D. (1973). Mater. Res. Bull. 8, 593-598. Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1991). C47, 1303-1305

Structure of catena-Poly\{bis[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato$\kappa^{2} O, O^{\prime}$ coopper- μ-(4,4'-bipyridine)- $\left.\kappa N: \kappa N^{\prime}\right\}-N, N$-dimethylformamide (1/2)

By Shao-Hua Gou,* Xiao-Zeng You and Zheng Xu
Coordination Chemistry Institute, Nanjing University, Nanjing, People's Republic of China

Zhong-Yuan Zhou and Kai-Be Yu
Chengdu Center of Analysis and Determination, Academia Sinica, Chengdu, People's Republic of China
and. Yun-Peng Yu and Duo-Lin Zhu
Department of Chemistry, Zhengjiang Teacher's College, Zhengjiang, People's Republic of China
(Received 27 June 1990; accepted 19 October 1990)

[^1]$9.820(2), \quad c=11.505(2) \AA, \quad \alpha=73 \cdot 40(1), \quad \beta=$
$65 \cdot 41(1), \quad \gamma=69.29(1)^{\circ}, V=913.76(3) \AA^{3}, \quad Z=1$,
$D_{x}=1.469 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$
$7.82 \mathrm{~cm}^{-1}, \quad F(000)=413, T=293 \mathrm{~K}, R=0.064, \quad w R$

0108-2701/91/061303-03\$03.00

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53838 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: Abstract. $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] .2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, $M_{r}=808.25, \quad$ triclinic, $\quad P \overline{1}, \quad a=9.637$ (2), $\quad b=$

 * To whom correspondence should be addressed.

